Search results for "Supercritical water oxidation"
showing 6 items of 6 documents
Polymer Synthesis in Supercritical Carbon Dioxide
2003
It is current opinion of most of the people involved in supercritical fluids (SCFs) technology that as the end of the twentieth century has been devoted to enlarge exploitation of compressed gases in separation processes the beginning of the twenty-first will be mainly aimed to improve their utilisation as solvents for reactions.
Synthesis of dimethyl carbonate in supercritical carbon dioxide
2006
The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu3SnOCH3, n-Bu2Sn(OCH3)2 , and [n-Bu2(CH3O)Sn]2 O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO2 pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO2 pressure higher than 16 MPa. Under these conditions, CO2 acted as a reactant and a solvent.
Baeyer—Villiger Oxidation in Supercritical CO2 with Potassium Peroxomonosulfate Supported on Acidic Silica Gel.
2006
Supercritical carbon dioxide (scCO2) is an efficient reaction medium to perform the Baeyer-Villiger oxidation with hydrated silica-supported potassium peroxomonosulfate (h-SiO2.KHSO5) under flow-through conditions. Hydration modulates the reactivity of the active surface by softening the acidity of the KHSO4 present in the supported reagent. The reaction in scCO2 is much more efficient than in n-hexane under similar conditions, which is attributed to better transport and solvating properties of the supercritical medium with regard to n-hexane.
Baeyer–Villiger oxidation of ketones with a silica-supported peracid in supercritical carbon dioxide under flow conditions
2009
[2-Percarboxyethyl]-functionalized silica reacts with ketones in supercritical carbon dioxide at 250 bar and 40 °C under flow conditions to yield the corresponding esters and lactones. The solid reagent can be easily recycled through treatment with 70% hydrogen peroxide in the presence of an acid at 0 °C. This procedure not only simplifies the isolation of the reaction products, but has the advantage of using only water and carbon dioxide as solvents under mild conditions.
Modification of Polymers in Supercritical Carbon Dioxide
2003
The interaction of scFluids and polymers are governed by the intermolecular forces between solvent-solvent, solvent-polymer segment, and polymer segment-segment pairs. Because of its symmetry, within reasonable pressure values, CO2 does not have a dipole moment, but it does have a quadrupole moment significant over a much shorter distance than dipolar interactions. The quadrupole moment and the Lewis acidity of CO2 imparts to the carbon dioxide the peculiarity to be a solvent for selected classes of polymers like perfluorinated polyacrylates, polysiloxanes and polyether-polycarbonate diblock copolymers [1–3].
Oxidation of alcohols to carbonyl compounds with CrO3.SiO2 in supercritical carbon dioxide.
2006
Supercritical carbon dioxide (scCO2) is an effective reaction medium to perform the oxidation of primary and secondary aliphatic alcohols to the corresponding carbonyl compounds with chromium trioxide supported on silica. These reactions were performed by flowing a solution of the alcohol in scCO2 through a column containing the supported reagent and recovering the product by depressurization. This method avoids the use of organic solvents and the contamination of the products with chromium species.